No edit summary
Line 1: Line 1:
In ideal conditions, Cannabis can absorb 1500 - 2000 umols/s. This means that the light needs to be powerful enough to deliver this intensity over the area the canopy will occupy. Equipped with a powerful and efficient grow light you may be tempted to use as much power as you can afford to increase yield, but this is often not the best strategy; leaves can be damaged by overexposure to light (and heat) which will decrease yield. Slowly increase the intensity of your light over several days by increasing power draw by 5-10 watts a day and observe the leaves. Any yellowing leaves can be a sign of light stress, this may be accompanied by curling leaves which is a sign of heat stress, often from lights being too intense. Note also that seedlings require less light than flowering plants
+
In ideal conditions, cannabis can absorb 1500 - 2000 μmol/s. For context, in California, the sun can emit up to 2000 μmol/s around midday. This means that the light should ideally be powerful enough to deliver this intensity over the area the canopy will occupy. Equipped with a powerful and efficient grow light, you may be tempted to use as much power as you can afford, to increase yield - but this is often not the best strategy; leaves can be damaged by overexposure to light (and heat) which will decrease yield. To avoid this, slowly increase the intensity of your light over several days, by increasing power draw by 5-10 watts per day, observing the leaves regularly. Any yellowing leaves can be a sign of light stress. This may be accompanied by curling leaves which are a sign of heat stress, often caused by lights being too intense. Note also that seedlings require less light than flowering plants.
   
   
 
== Horticultural light metrics ==
 
== Horticultural light metrics ==
There are many different metrics that can be used to measure the intensity and quality of light for photosynthesis in the cultivar
+
There are many different metrics that can be used to measure the intensity and quality of light for photosynthesis in the cultivar.
 
=== μmol/s ===
 
=== μmol/s ===
The measure of photons per second produced by a light. Photons are measured in micro (10^-6) [https://en.wikipedia.org/wiki/Mole_(unit) moles] there are a huge amount of photons coming from any light source. One µmol is actually 602 quadrillion photons. Simply put this metric is the intensity per second from a light
+
The measure of photons per second produced by a light. Photons are measured in micro (10^-6) [https://en.wikipedia.org/wiki/Mole_(unit) moles] there are a huge amount of photons coming from any light source. One µmol is actually 602 quadrillion photons. Simply put, this metric is the intensity per second from a light.
 
=== μmol/J ===
 
=== μmol/J ===
The light intensity a horticultural light produces per Joule of power it uses. This is a measure of its efficiency. At the time of writing the most efficient LED package available is the [https://www.samsung.com/led/lighting/mid-power-leds/3030-leds/lm301h/ LM301H] by Samsung. It achieves 3.10 μmol/J @ 65 mA, 25°C. Note the efficiency will change depending on temperature and current supplied.
+
The light intensity a horticultural light produces per Joule of power it uses. This is a measure of its efficiency. At the time of writing, the most efficient LED package available is the [https://www.samsung.com/led/lighting/mid-power-leds/3030-leds/lm301h/ LM301H] by Samsung. It achieves 3.10 μmol/J @ 65 mA, 25°C. Note the efficiency will change depending on the temperature and current supplied.
 
=== PPFD ===
 
=== PPFD ===
Photosynthetic Photon Flux Density its unit is μmol/m^2/s. It is a measure of light intensity over an area per second. This is important to note when buying a growing light, for example, light A may provide an intensity of 800 μmol/s in a 1m^2 area while light B provides the same intensity in a 4m^2 area. Light B provides the same intensity but over a larger area, so it can support a larger plant. In this case, light B has a greater PPFD
+
Photosynthetic Photon Flux Density: its unit is μmol/m^2/s. It is a measure of light intensity over an area per second. This is important to note when buying a grow light. For example, light A may provide an intensity of 800 μmol/s in a 1m^2 area, while light B provides the same intensity in a 4m^2 area. Light B provides the same intensity but over four times the area, so it can support a larger plant. In this case, light B has a greater PPFD.
   
 
== Horticulural light terms ==
 
== Horticulural light terms ==
 
=== PAR ===
 
=== PAR ===
PAR stands for Photosynthetic Active Radiation, light within the range of 400 to 700 nanometers that drives photosynthesis. For reference, the human eye can see light between 380 to 750 nm.
+
PAR stands for Photosynthetic Active Radiation: light within the range of 400 to 700 nanometers that drives photosynthesis. For reference, the human eye can see light between 380 to 750 nm.
   
 
==Types of lighting ==
 
==Types of lighting ==
Line 22: Line 22:
   
 
==== LED Drivers ====
 
==== LED Drivers ====
LED drivers come in constant voltage and constant current, both with dimmable options. If your panel has a recommended voltage, it's best to select a constant voltage driver. Dimmable drivers are more expensive but worth it because your plant requires more light at the flowering stage than at the seedling stage, so you may wish to use less power initially to conserve power. Meanwell drivers are the industry standard for efficiency and lifespan.
+
LED drivers can be categorised into constant voltage and constant current, both with dimmable options. If your panel has a recommended voltage, it's best to select a constant voltage driver. Dimmable drivers are more expensive but worth it because your plant requires more light at the flowering stage than at the seedling stage, so you may wish to use less power initially to conserve power. Meanwell drivers are the industry standard for efficiency and lifespan.
   
 
== Light spectrum ==
 
== Light spectrum ==
The colour of light is dependant on the frequency of the light. see also [https://en.wikipedia.org/wiki/Electromagnetic_spectrum Electromagnetic spectrum]. Blue/purple light used to be standard in Cannabis growing but are slowing being replaced full-spectrum lights. Throughout the plant's life cycle different light spectrums are more important
+
The colour of light is dependant on the frequency of the light. see also [https://en.wikipedia.org/wiki/Electromagnetic_spectrum Electromagnetic spectrum]. Blue/purple light used to be standard in Cannabis growing but are slowly being replaced by full-spectrum lights. Throughout the plant's life cycle, it can be helpful to apply different ranges of the light spectrum.
=== low frequency light (below visible spectrum e.g Blue) ===
+
=== High frequency light (e.g Blue) ===
UV light rays can damage plants and stress them into creating more trichromes<ref>What light spectrum does weed need to grow? - Growing Cannabis 201: Advanced Grow Tips | Indica Institute - https://www.youtube.com/watch?v=NY0bB_Jmt5E</ref><ref>Pate, David W. (1983). "Possible role of ultraviolet radiation in evolution of Cannabis chemotypes" doi:10.1007/BF02904200</ref> UV lights specifically for growing are available but it is also possible to re-purpose a UV light intended for a reptile enclosure
+
UV light rays can damage plants and stress them, triggering the creation of more trichromes<ref>What light spectrum does weed need to grow? - Growing Cannabis 201: Advanced Grow Tips | Indica Institute - https://www.youtube.com/watch?v=NY0bB_Jmt5E</ref><ref>Pate, David W. (1983). "Possible role of ultraviolet radiation in evolution of Cannabis chemotypes" doi:10.1007/BF02904200</ref> UV lights specifically for growing are available but it is also possible to re-purpose a UV light intended for a reptile enclosure.
 
==== UV A ====
 
==== UV A ====
 
==== UV B ====
 
==== UV B ====
   
=== High frequency light ===
+
=== Low frequency light ===
 
====Red light====
 
====Red light====
 
Red light promotes stretching of the stem
 
Red light promotes stretching of the stem
 
==== Far range and infra-red====
 
==== Far range and infra-red====
   
==Light positioning==
 
   
   
 
== Light schedules ==
 
== Light schedules ==
Common light schedules are 24/0 (24 hours of light a day), 20/4 (20 hours light, 4 hours darkness), 18/6 (18 hours light, 6 hours darkness).
+
Common light schedules include 24/0 (24 hours of light a day), 20/4 (20 hours light, 4 hours darkness), 18/6 (18 hours light, 6 hours darkness) and 12/12 (12 hours of light, 12 hours of darkness).
   
Auto flowers can be grown with lights on 24 hours a day (24/0), but constant light can leave the plant with no time to recover from deficiencies or stress in general.
+
Auto flowers can be grown with lights on 24 hours a day (24/0), but constant light can leave the plant with no time to recover from deficiencies, or stress in general.
It makes sense to give the plant some dark period to try and match its circadian rhythm, I recommend 20/4 or 22/2
+
It is a good idea to match the light schedule with the cultivar's circadian rhythm; I recommend 20/4 or 22/2.
   
 
[http://www.plantcell.org/content/18/4/792 More on circadian rhythm in plants]<ref>https://doi.org/10.1105/tpc.106.040980 Plant Circadian Rhythms - C. Robertson McClung April 2006</ref>
 
[http://www.plantcell.org/content/18/4/792 More on circadian rhythm in plants]<ref>https://doi.org/10.1105/tpc.106.040980 Plant Circadian Rhythms - C. Robertson McClung April 2006</ref>

Revision as of 13:41, 6 February 2021

In ideal conditions, cannabis can absorb 1500 - 2000 μmol/s. For context, in California, the sun can emit up to 2000 μmol/s around midday. This means that the light should ideally be powerful enough to deliver this intensity over the area the canopy will occupy. Equipped with a powerful and efficient grow light, you may be tempted to use as much power as you can afford, to increase yield - but this is often not the best strategy; leaves can be damaged by overexposure to light (and heat) which will decrease yield. To avoid this, slowly increase the intensity of your light over several days, by increasing power draw by 5-10 watts per day, observing the leaves regularly. Any yellowing leaves can be a sign of light stress. This may be accompanied by curling leaves which are a sign of heat stress, often caused by lights being too intense. Note also that seedlings require less light than flowering plants.


Horticultural light metrics

There are many different metrics that can be used to measure the intensity and quality of light for photosynthesis in the cultivar.

μmol/s

The measure of photons per second produced by a light. Photons are measured in micro (10^-6) moles there are a huge amount of photons coming from any light source. One µmol is actually 602 quadrillion photons. Simply put, this metric is the intensity per second from a light.

μmol/J

The light intensity a horticultural light produces per Joule of power it uses. This is a measure of its efficiency. At the time of writing, the most efficient LED package available is the LM301H by Samsung. It achieves 3.10 μmol/J @ 65 mA, 25°C. Note the efficiency will change depending on the temperature and current supplied.

PPFD

Photosynthetic Photon Flux Density: its unit is μmol/m^2/s. It is a measure of light intensity over an area per second. This is important to note when buying a grow light. For example, light A may provide an intensity of 800 μmol/s in a 1m^2 area, while light B provides the same intensity in a 4m^2 area. Light B provides the same intensity but over four times the area, so it can support a larger plant. In this case, light B has a greater PPFD.

Horticulural light terms

PAR

PAR stands for Photosynthetic Active Radiation: light within the range of 400 to 700 nanometers that drives photosynthesis. For reference, the human eye can see light between 380 to 750 nm.

Types of lighting

There are several light technologies that have differing efficiencies, spectrums and form factors

CFL - Compact fluorescent lamp

HID - High-density discharge

LED - Light emitting diode

LED Drivers

LED drivers can be categorised into constant voltage and constant current, both with dimmable options. If your panel has a recommended voltage, it's best to select a constant voltage driver. Dimmable drivers are more expensive but worth it because your plant requires more light at the flowering stage than at the seedling stage, so you may wish to use less power initially to conserve power. Meanwell drivers are the industry standard for efficiency and lifespan.

Light spectrum

The colour of light is dependant on the frequency of the light. see also Electromagnetic spectrum. Blue/purple light used to be standard in Cannabis growing but are slowly being replaced by full-spectrum lights. Throughout the plant's life cycle, it can be helpful to apply different ranges of the light spectrum.

High frequency light (e.g Blue)

UV light rays can damage plants and stress them, triggering the creation of more trichromes[1][2] UV lights specifically for growing are available but it is also possible to re-purpose a UV light intended for a reptile enclosure.

UV A

UV B

Low frequency light

Red light

Red light promotes stretching of the stem

Far range and infra-red

Light schedules

Common light schedules include 24/0 (24 hours of light a day), 20/4 (20 hours light, 4 hours darkness), 18/6 (18 hours light, 6 hours darkness) and 12/12 (12 hours of light, 12 hours of darkness).

Auto flowers can be grown with lights on 24 hours a day (24/0), but constant light can leave the plant with no time to recover from deficiencies, or stress in general. It is a good idea to match the light schedule with the cultivar's circadian rhythm; I recommend 20/4 or 22/2.

More on circadian rhythm in plants[3]

Plant responses to circadian rhythm


References

  1. What light spectrum does weed need to grow? - Growing Cannabis 201: Advanced Grow Tips | Indica Institute - https://www.youtube.com/watch?v=NY0bB_Jmt5E
  2. Pate, David W. (1983). "Possible role of ultraviolet radiation in evolution of Cannabis chemotypes" doi:10.1007/BF02904200
  3. https://doi.org/10.1105/tpc.106.040980 Plant Circadian Rhythms - C. Robertson McClung April 2006